If it's not what You are looking for type in the equation solver your own equation and let us solve it.
50-1/2x^2=23
We move all terms to the left:
50-1/2x^2-(23)=0
Domain of the equation: 2x^2!=0We add all the numbers together, and all the variables
x^2!=0/2
x^2!=√0
x!=0
x∈R
-1/2x^2+27=0
We multiply all the terms by the denominator
27*2x^2-1=0
Wy multiply elements
54x^2-1=0
a = 54; b = 0; c = -1;
Δ = b2-4ac
Δ = 02-4·54·(-1)
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{6}}{2*54}=\frac{0-6\sqrt{6}}{108} =-\frac{6\sqrt{6}}{108} =-\frac{\sqrt{6}}{18} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{6}}{2*54}=\frac{0+6\sqrt{6}}{108} =\frac{6\sqrt{6}}{108} =\frac{\sqrt{6}}{18} $
| −9m−9=9 | | 2x^2-11x=17-x^2 | | -9(n-6)=4(n+4) | | 92−16b=12 | | (10k-3)=4 | | -x-36=14x+1 | | 360=(2x)+(3x+4)+(4x+16)+(2x+10) | | 6k^2+4k+7=0 | | 3x-6+65=180 | | 7(x+3)-8=3x+4(4+x) | | 13x^2-108x+207=0 | | (2x-7)(x-2)=(x+10)(x-5) | | 13x-14=90 | | 10(x+2)/7=2x-4 | | p×4/5=8/15 | | 7x+2=12-3x | | 2x+1/2x=80 | | 3(4x=2)+7=12x+13 | | x+x+1/2x=80 | | 244+x=360 | | 20+3x6=x | | 2.12=a/740 | | 6x+5=4+3x | | H=-16^2+15t+12 | | 2*3^x=40.8 | | 8n-3=-75 | | 14.7=g/3.2 | | 0.80x+0.35(120)=0.40(55) | | 2x+4x-8=2x-22 | | (2/7)x+(6/7)=-(2/7) | | 17-5d=-42 | | 9-2t=16 |